The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhedron
نویسندگان
چکیده
It is well-know that the Chvátal-Gomory (CG) closure of a rational polyhedron is a rational polyhedron. In this paper, we show that the CG closure of a bounded full-dimensional ellipsoid, described by rational data, is a rational polytope. To the best of our knowledge, this is the first extension of the polyhedrality of the CG closure to a nonpolyhedral set. A key feature of the proof is to verify that all non-integral points on the boundary of ellipsoids can be separated by some CG cut. Given a point u on the boundary of an ellipsoid that cannot be trivially separated using the CG cut parallel to its supporting hyperplane, the proof constructs a sequence of CG cuts that eventually separates u. The polyhedrality of the CG closure is established using this separation result and a compactness argument. The proof also establishes some sufficient conditions for the polyhedrality result for general compact convex sets.
منابع مشابه
Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point
Gomory-Chvátal cuts are prominent in integer programming. The Gomory-Chvátal closure of a polyhedron is the intersection of all half spaces defined by its Gomory-Chvátal cuts. In this paper, we show that it is NP-complete to decide whether the Gomory-Chvátal closure of a rational polyhedron is empty, even when this polyhedron contains no integer point. This implies that the problem of deciding ...
متن کاملLower Bounds for Chvátal-gomory Style Operators
Valid inequalities or cutting planes for (mixed-) integer programming problems are an essential theoretical tool for studying combinatorial properties of polyhedra. They are also of utmost importance for solving optimization problems in practice; in fact any modern solver relies on several families of cutting planes. The Chvátal-Gomory procedure, one such approach, has a peculiarity that differ...
متن کاملStable sets, corner polyhedra and the Chvátal closure
In this work, we consider a classical formulation of the stable set problem. We characterize its corner polyhedron, i.e. the convex hull of the points satisfying all the constraints except the non-negativity of the basic variables. We show that the non-trivial inequalities necessary to describe this polyhedron can be derived from one row of the simplex tableau as fractional Gomory cuts. It foll...
متن کاملA short proof for the polyhedrality of the Chvátal-Gomory closure of a compact convex set
Recently Schrijver’s open problem, whether the Chvátal-Gomory closure of an irrational polytope is polyhedral was answered independently in the seminal works of Dadush et al. [2011] and Dunkel and Schulz [2010]; the former even applies to general compact convex sets. We present a very short, easily accessible proof.
متن کاملThe split closure of a strictly convex body
The Chvátal-Gomory closure and the split closure of a rational polyhedron are rational polyhedra. It was recently shown that the Chvátal-Gomory closure of a strictly convex body is also a rational polytope. In this note, we show that the split closure of a strictly convex body is defined by a finite number of split disjunctions, but is not necessarily polyhedral. We also give a closed form expr...
متن کامل